Typed dictionaries

TypedDict

(Originally specified in PEP 589.)

A TypedDict type represents dictionary objects with a specific set of string keys, and with specific value types for each valid key. Each string key can be either required (it must be present) or non-required (it doesn’t need to exist).

There are two ways of defining TypedDict types. The first uses a class-based syntax. The second is an alternative assignment-based syntax that is provided for backwards compatibility, to allow the feature to be backported to older Python versions. The rationale is similar to why PEP 484 supports a comment-based annotation syntax for Python 2.7: type hinting is particularly useful for large existing codebases, and these often need to run on older Python versions. The two syntax options parallel the syntax variants supported by typing.NamedTuple. Other features include TypedDict inheritance and totality (specifying whether keys are required or not).

This section also provides a sketch of how a type checker is expected to support type checking operations involving TypedDict objects. Similar to PEP 484, this discussion is left somewhat vague on purpose, to allow experimentation with a wide variety of different type checking approaches. In particular, type compatibility should be based on structural compatibility: a more specific TypedDict type can be compatible with a smaller (more general) TypedDict type.

Class-based Syntax

A TypedDict type can be defined using the class definition syntax with typing.TypedDict as the sole base class:

from typing import TypedDict

class Movie(TypedDict):
    name: str
    year: int

Movie is a TypedDict type with two items: 'name' (with type str) and 'year' (with type int).

A type checker should validate that the body of a class-based TypedDict definition conforms to the following rules:

  • The class body should only contain lines with item definitions of the form key: value_type, optionally preceded by a docstring. The syntax for item definitions is identical to attribute annotations, but there must be no initializer, and the key name actually refers to the string value of the key instead of an attribute name.

  • Type comments cannot be used with the class-based syntax, for consistency with the class-based NamedTuple syntax. Instead, Alternative Syntax provides an alternative, assignment-based syntax for backwards compatibility.

  • String literal forward references are valid in the value types.

  • Methods are not allowed, since the runtime type of a TypedDict object will always be just dict (it is never a subclass of dict).

  • Specifying a metaclass is not allowed.

  • TypedDicts may be made generic by adding Generic[T] among the bases (or, in Python 3.12 and higher, by using the new syntax for generic classes).

An empty TypedDict can be created by only including pass in the body (if there is a docstring, pass can be omitted):

class EmptyDict(TypedDict):
    pass

Using TypedDict Types

Here is an example of how the type Movie can be used:

movie: Movie = {'name': 'Blade Runner',
                'year': 1982}

An explicit Movie type annotation is generally needed, as otherwise an ordinary dictionary type could be assumed by a type checker, for backwards compatibility. When a type checker can infer that a constructed dictionary object should be a TypedDict, an explicit annotation can be omitted. A typical example is a dictionary object as a function argument. In this example, a type checker is expected to infer that the dictionary argument should be understood as a TypedDict:

def record_movie(movie: Movie) -> None: ...

record_movie({'name': 'Blade Runner', 'year': 1982})

Another example where a type checker should treat a dictionary display as a TypedDict is in an assignment to a variable with a previously declared TypedDict type:

movie: Movie
...
movie = {'name': 'Blade Runner', 'year': 1982}

Operations on movie can be checked by a static type checker:

movie['director'] = 'Ridley Scott'  # Error: invalid key 'director'
movie['year'] = '1982'  # Error: invalid value type ("int" expected)

The code below should be rejected, since 'title' is not a valid key, and the 'name' key is missing:

movie2: Movie = {'title': 'Blade Runner',
                 'year': 1982}

The created TypedDict type object is not a real class object. Here are the only uses of the type a type checker is expected to allow:

  • It can be used in type annotations and in any context where an arbitrary type hint is valid, such as in type aliases and as the target type of a cast.

  • It can be used as a callable object with keyword arguments corresponding to the TypedDict items. Non-keyword arguments are not allowed. Example:

    m = Movie(name='Blade Runner', year=1982)
    

    When called, the TypedDict type object returns an ordinary dictionary object at runtime:

    print(type(m))  # <class 'dict'>
    
  • It can be used as a base class, but only when defining a derived TypedDict. This is discussed in more detail below.

In particular, TypedDict type objects cannot be used in isinstance() tests such as isinstance(d, Movie). The reason is that there is no existing support for checking types of dictionary item values, since isinstance() does not work with many types, including common ones like list[str]. This would be needed for cases like this:

class Strings(TypedDict):
    items: list[str]

print(isinstance({'items': [1]}, Strings))    # Should be False
print(isinstance({'items': ['x']}, Strings))  # Should be True

The above use case is not supported. This is consistent with how isinstance() is not supported for list[str].

Inheritance

It is possible for a TypedDict type to inherit from one or more TypedDict types using the class-based syntax. In this case the TypedDict base class should not be included. Example:

class BookBasedMovie(Movie):
    based_on: str

Now BookBasedMovie has keys name, year, and based_on. It is equivalent to this definition, since TypedDict types use structural compatibility:

class BookBasedMovie(TypedDict):
    name: str
    year: int
    based_on: str

Here is an example of multiple inheritance:

class X(TypedDict):
    x: int

class Y(TypedDict):
    y: str

class XYZ(X, Y):
    z: bool

The TypedDict XYZ has three items: x (type int), y (type str), and z (type bool).

A TypedDict cannot inherit from both a TypedDict type and a non-TypedDict base class other than Generic.

Additional notes on TypedDict class inheritance:

  • Changing a field type of a parent TypedDict class in a subclass is not allowed. Example:

    class X(TypedDict):
       x: str
    
    class Y(X):
       x: int  # Type check error: cannot overwrite TypedDict field "x"
    

    In the example outlined above TypedDict class annotations returns type str for key x:

    print(Y.__annotations__)  # {'x': <class 'str'>}
    
  • Multiple inheritance does not allow conflict types for the same name field:

    class X(TypedDict):
       x: int
    
    class Y(TypedDict):
       x: str
    
    class XYZ(X, Y):  # Type check error: cannot overwrite TypedDict field "x" while merging
       xyz: bool
    

Totality

By default, all keys must be present in a TypedDict. It is possible to override this by specifying totality. Here is how to do this using the class-based syntax:

class Movie(TypedDict, total=False):
    name: str
    year: int

This means that a Movie TypedDict can have any of the keys omitted. Thus these are valid:

m: Movie = {}
m2: Movie = {'year': 2015}

A type checker is only expected to support a literal False or True as the value of the total argument. True is the default, and makes all items defined in the class body be required.

The totality flag only applies to items defined in the body of the TypedDict definition. Inherited items won’t be affected, and instead use totality of the TypedDict type where they were defined. This makes it possible to have a combination of required and non-required keys in a single TypedDict type. Alternatively, Required and NotRequired (see below) can be used to mark individual items as required or non-required.

Alternative Syntax

This section provides an alternative syntax that can be backported to older Python versions such as 3.5 and 2.7 that don’t support the variable definition syntax introduced in PEP 526. It resembles the traditional syntax for defining named tuples:

Movie = TypedDict('Movie', {'name': str, 'year': int})

It is also possible to specify totality using the alternative syntax:

Movie = TypedDict('Movie',
                  {'name': str, 'year': int},
                  total=False)

The semantics are equivalent to the class-based syntax. This syntax doesn’t support inheritance, however. The motivation for this is keeping the backwards compatible syntax as simple as possible while covering the most common use cases.

A type checker is only expected to accept a dictionary display expression as the second argument to TypedDict. In particular, a variable that refers to a dictionary object does not need to be supported, to simplify implementation.

Type Consistency

Informally speaking, type consistency is a generalization of the is-subtype-of relation to support the Any type. It is defined more formally in PEP 483. This section introduces the new, non-trivial rules needed to support type consistency for TypedDict types.

First, any TypedDict type is consistent with Mapping[str, object]. Second, a TypedDict type A is consistent with TypedDict B if A is structurally compatible with B. This is true if and only if both of these conditions are satisfied:

  • For each key in B, A has the corresponding key and the corresponding value type in A is consistent with the value type in B. For each key in B, the value type in B is also consistent with the corresponding value type in A.

  • For each required key in B, the corresponding key is required in A. For each non-required key in B, the corresponding key is not required in A.

Discussion:

  • Value types behave invariantly, since TypedDict objects are mutable. This is similar to mutable container types such as List and Dict. Example where this is relevant:

    class A(TypedDict):
        x: int | None
    
    class B(TypedDict):
        x: int
    
    def f(a: A) -> None:
        a['x'] = None
    
    b: B = {'x': 0}
    f(b)  # Type check error: 'B' not compatible with 'A'
    b['x'] + 1  # Runtime error: None + 1
    
  • A TypedDict type with a required key is not consistent with a TypedDict type where the same key is a non-required key, since the latter allows keys to be deleted. Example where this is relevant:

    class A(TypedDict, total=False):
        x: int
    
    class B(TypedDict):
        x: int
    
    def f(a: A) -> None:
        del a['x']
    
    b: B = {'x': 0}
    f(b)  # Type check error: 'B' not compatible with 'A'
    b['x'] + 1  # Runtime KeyError: 'x'
    
  • A TypedDict type A with no key 'x' is not consistent with a TypedDict type with a non-required key 'x', since at runtime the key 'x' could be present and have an incompatible type (which may not be visible through A due to structural subtyping). Example:

    class A(TypedDict, total=False):
        x: int
        y: int
    
    class B(TypedDict, total=False):
        x: int
    
    class C(TypedDict, total=False):
        x: int
        y: str
    
     def f(a: A) -> None:
         a['y'] = 1
    
     def g(b: B) -> None:
         f(b)  # Type check error: 'B' incompatible with 'A'
    
     c: C = {'x': 0, 'y': 'foo'}
     g(c)
     c['y'] + 'bar'  # Runtime error: int + str
    
  • A TypedDict isn’t consistent with any Dict[...] type, since dictionary types allow destructive operations, including clear(). They also allow arbitrary keys to be set, which would compromise type safety. Example:

    class A(TypedDict):
        x: int
    
    class B(A):
        y: str
    
    def f(d: Dict[str, int]) -> None:
        d['y'] = 0
    
    def g(a: A) -> None:
        f(a)  # Type check error: 'A' incompatible with Dict[str, int]
    
    b: B = {'x': 0, 'y': 'foo'}
    g(b)
    b['y'] + 'bar'  # Runtime error: int + str
    
  • A TypedDict with all int values is not consistent with Mapping[str, int], since there may be additional non-int values not visible through the type, due to structural subtyping. These can be accessed using the values() and items() methods in Mapping, for example. Example:

    class A(TypedDict):
        x: int
    
    class B(TypedDict):
        x: int
        y: str
    
    def sum_values(m: Mapping[str, int]) -> int:
        n = 0
        for v in m.values():
            n += v  # Runtime error
        return n
    
    def f(a: A) -> None:
        sum_values(a)  # Error: 'A' incompatible with Mapping[str, int]
    
    b: B = {'x': 0, 'y': 'foo'}
    f(b)
    

Supported and Unsupported Operations

Type checkers should support restricted forms of most dict operations on TypedDict objects. The guiding principle is that operations not involving Any types should be rejected by type checkers if they may violate runtime type safety. Here are some of the most important type safety violations to prevent:

  1. A required key is missing.

  2. A value has an invalid type.

  3. A key that is not defined in the TypedDict type is added.

A key that is not a literal should generally be rejected, since its value is unknown during type checking, and thus can cause some of the above violations. (Use of Final Values and Literal Types generalizes this to cover final names and literal types.)

The use of a key that is not known to exist should be reported as an error, even if this wouldn’t necessarily generate a runtime type error. These are often mistakes, and these may insert values with an invalid type if structural subtyping hides the types of certain items. For example, d['x'] = 1 should generate a type check error if 'x' is not a valid key for d (which is assumed to be a TypedDict type).

Extra keys included in TypedDict object construction should also be caught. In this example, the director key is not defined in Movie and is expected to generate an error from a type checker:

m: Movie = dict(
    name='Alien',
    year=1979,
    director='Ridley Scott')  # error: Unexpected key 'director'

Type checkers should reject the following operations on TypedDict objects as unsafe, even though they are valid for normal dictionaries:

  • Operations with arbitrary str keys (instead of string literals or other expressions with known string values) should generally be rejected. This involves both destructive operations such as setting an item and read-only operations such as subscription expressions. As an exception to the above rule, d.get(e) and e in d should be allowed for TypedDict objects, for an arbitrary expression e with type str. The motivation is that these are safe and can be useful for introspecting TypedDict objects. The static type of d.get(e) should be object if the string value of e cannot be determined statically.

  • clear() is not safe since it could remove required keys, some of which may not be directly visible because of structural subtyping. popitem() is similarly unsafe, even if all known keys are not required (total=False).

  • del obj['key'] should be rejected unless 'key' is a non-required key.

Type checkers may allow reading an item using d['x'] even if the key 'x' is not required, instead of requiring the use of d.get('x') or an explicit 'x' in d check. The rationale is that tracking the existence of keys is difficult to implement in full generality, and that disallowing this could require many changes to existing code.

The exact type checking rules are up to each type checker to decide. In some cases potentially unsafe operations may be accepted if the alternative is to generate false positive errors for idiomatic code.

Use of Final Values and Literal Types

Type checkers should allow final names with string values to be used instead of string literals in operations on TypedDict objects. For example, this is valid:

YEAR: Final = 'year'

m: Movie = {'name': 'Alien', 'year': 1979}
years_since_epoch = m[YEAR] - 1970

Similarly, an expression with a suitable literal type can be used instead of a literal value:

def get_value(movie: Movie,
              key: Literal['year', 'name']) -> int | str:
    return movie[key]

Type checkers are only expected to support actual string literals, not final names or literal types, for specifying keys in a TypedDict type definition. Also, only a boolean literal can be used to specify totality in a TypedDict definition. The motivation for this is to make type declarations self-contained, and to simplify the implementation of type checkers.

Backwards Compatibility

To retain backwards compatibility, type checkers should not infer a TypedDict type unless it is sufficiently clear that this is desired by the programmer. When unsure, an ordinary dictionary type should be inferred. Otherwise existing code that type checks without errors may start generating errors once TypedDict support is added to the type checker, since TypedDict types are more restrictive than dictionary types. In particular, they aren’t subtypes of dictionary types.

Required and NotRequired

(Originally specified in PEP 655.)

The typing.Required type qualifier is used to indicate that a variable declared in a TypedDict definition is a required key:

class Movie(TypedDict, total=False):
    title: Required[str]
    year: int

Additionally the typing.NotRequired type qualifier is used to indicate that a variable declared in a TypedDict definition is a potentially-missing key:

class Movie(TypedDict):  # implicitly total=True
    title: str
    year: NotRequired[int]

It is an error to use Required[] or NotRequired[] in any location that is not an item of a TypedDict. Type checkers must enforce this restriction.

It is valid to use Required[] and NotRequired[] even for items where it is redundant, to enable additional explicitness if desired:

class Movie(TypedDict):
    title: Required[str]  # redundant
    year: NotRequired[int]

It is an error to use both Required[] and NotRequired[] at the same time:

class Movie(TypedDict):
    title: str
    year: NotRequired[Required[int]]  # ERROR

Type checkers must enforce this restriction. The runtime implementations of Required[] and NotRequired[] may also enforce this restriction.

The alternative functional syntax for TypedDict also supports Required[], NotRequired[], and ReadOnly[]:

Movie = TypedDict('Movie', {'name': str, 'year': NotRequired[int]})

Interaction with total=False

Any TypedDict declared with total=False is equivalent to a TypedDict with an implicit total=True definition with all of its keys marked as NotRequired[].

Therefore:

class _MovieBase(TypedDict):  # implicitly total=True
    title: str

class Movie(_MovieBase, total=False):
    year: int

is equivalent to:

class _MovieBase(TypedDict):
    title: str

class Movie(_MovieBase):
    year: NotRequired[int]

Interaction with Annotated[]

Required[] and NotRequired[] can be used with Annotated[], in any nesting order:

class Movie(TypedDict):
    title: str
    year: NotRequired[Annotated[int, ValueRange(-9999, 9999)]]  # ok
class Movie(TypedDict):
    title: str
    year: Annotated[NotRequired[int], ValueRange(-9999, 9999)]  # ok

In particular allowing Annotated[] to be the outermost annotation for an item allows better interoperability with non-typing uses of annotations, which may always want Annotated[] as the outermost annotation (discussion).

Read-only Items

(Originally specified in PEP 705.)

typing.ReadOnly type qualifier

The typing.ReadOnly type qualifier is used to indicate that an item declared in a TypedDict definition may not be mutated (added, modified, or removed):

from typing import ReadOnly

class Band(TypedDict):
    name: str
    members: ReadOnly[list[str]]

blur: Band = {"name": "blur", "members": []}
blur["name"] = "Blur"  # OK: "name" is not read-only
blur["members"] = ["Damon Albarn"]  # Type check error: "members" is read-only
blur["members"].append("Damon Albarn")  # OK: list is mutable

Interaction with other special types

ReadOnly[] can be used with Required[], NotRequired[] and Annotated[], in any nesting order:

class Movie(TypedDict):
    title: ReadOnly[Required[str]]  # OK
    year: ReadOnly[NotRequired[Annotated[int, ValueRange(-9999, 9999)]]]  # OK
class Movie(TypedDict):
    title: Required[ReadOnly[str]]  # OK
    year: Annotated[NotRequired[ReadOnly[int]], ValueRange(-9999, 9999)]  # OK

Inheritance

Subclasses can redeclare read-only items as non-read-only, allowing them to be mutated:

class NamedDict(TypedDict):
    name: ReadOnly[str]

class Album(NamedDict):
    name: str
    year: int

album: Album = { "name": "Flood", "year": 1990 }
album["year"] = 1973
album["name"] = "Dark Side Of The Moon"  # OK: "name" is not read-only in Album

If a read-only item is not redeclared, it remains read-only:

class Album(NamedDict):
    year: int

album: Album = { "name": "Flood", "year": 1990 }
album["name"] = "Dark Side Of The Moon"  # Type check error: "name" is read-only in Album

Subclasses can narrow value types of read-only items:

class AlbumCollection(TypedDict):
    albums: ReadOnly[Collection[Album]]

class RecordShop(AlbumCollection):
    name: str
    albums: ReadOnly[list[Album]]  # OK: "albums" is read-only in AlbumCollection

Subclasses can require items that are read-only but not required in the superclass:

class OptionalName(TypedDict):
    name: ReadOnly[NotRequired[str]]

class RequiredName(OptionalName):
    name: ReadOnly[Required[str]]

d: RequiredName = {}  # Type check error: "name" required

Subclasses can combine these rules:

class OptionalIdent(TypedDict):
    ident: ReadOnly[NotRequired[str | int]]

class User(OptionalIdent):
    ident: str  # Required, mutable, and not an int

Note that these are just consequences of structural typing, but they are highlighted here as the behavior now differs from the rules specified in PEP 589.

Type consistency

This section updates the type consistency rules described above that were created prior to the introduction of ReadOnly

A TypedDict type A is consistent with TypedDict B if A is structurally compatible with B. This is true if and only if all of the following are satisfied:

  • For each item in B, A has the corresponding key, unless the item in B is read-only, not required, and of top value type (ReadOnly[NotRequired[object]]).

  • For each item in B, if A has the corresponding key, the corresponding value type in A is consistent with the value type in B.

  • For each non-read-only item in B, its value type is consistent with the corresponding value type in A.

  • For each required key in B, the corresponding key is required in A.

  • For each non-required key in B, if the item is not read-only in B, the corresponding key is not required in A.

Discussion:

  • All non-specified items in a TypedDict implicitly have value type ReadOnly[NotRequired[object]].

  • Read-only items behave covariantly, as they cannot be mutated. This is similar to container types such as Sequence, and different from non-read-only items, which behave invariantly. Example:

    class A(TypedDict):
        x: ReadOnly[int | None]
    
    class B(TypedDict):
        x: int
    
    def f(a: A) -> None:
        print(a["x"] or 0)
    
    b: B = {"x": 1}
    f(b)  # Accepted by type checker
    
  • A TypedDict type A with no explicit key 'x' is not consistent with a TypedDict type B with a non-required key 'x', since at runtime the key 'x' could be present and have an incompatible type (which may not be visible through A due to structural subtyping). The only exception to this rule is if the item in B is read-only, and the value type is of top type (object). For example:

    class A(TypedDict):
        x: int
    
    class B(TypedDict):
        x: int
        y: ReadOnly[NotRequired[object]]
    
    a: A = { "x": 1 }
    b: B = a  # Accepted by type checker
    

Update method

In addition to existing type checking rules, type checkers should error if a TypedDict with a read-only item is updated with another TypedDict that declares that key:

class A(TypedDict):
    x: ReadOnly[int]
    y: int

a1: A = { "x": 1, "y": 2 }
a2: A = { "x": 3, "y": 4 }
a1.update(a2)  # Type check error: "x" is read-only in A

Unless the declared value is of bottom type (Never):

class B(TypedDict):
    x: NotRequired[typing.Never]
    y: ReadOnly[int]

def update_a(a: A, b: B) -> None:
    a.update(b)  # Accepted by type checker: "x" cannot be set on b

Note: Nothing will ever match the Never type, so an item annotated with it must be absent.

Keyword argument typing

As discussed in the section Unpack for keyword arguments, an unpacked TypedDict can be used to annotate **kwargs. Marking one or more of the items of a TypedDict used in this way as read-only will have no effect on the type signature of the method. However, it will prevent the item from being modified in the body of the function:

class Args(TypedDict):
    key1: int
    key2: str

class ReadOnlyArgs(TypedDict):
    key1: ReadOnly[int]
    key2: ReadOnly[str]

class Function(Protocol):
    def __call__(self, **kwargs: Unpack[Args]) -> None: ...

def impl(**kwargs: Unpack[ReadOnlyArgs]) -> None:
    kwargs["key1"] = 3  # Type check error: key1 is readonly

fn: Function = impl  # Accepted by type checker: function signatures are identical